ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 108108
УсловиеПусть O – центр описанной окружности остроугольного треугольника ABC, SA, SB, SC – окружности с центром O, касающиеся сторон BC, CA и AB соответственно. Докажите, что сумма трёх углов: между касательными к SA, проведёнными из точки A, к SB – из точки B, и к SC – из точки C, равна 180°. Решение Пусть окружность с центром O касается стороны AC в точке B1, а касательных к этой окружности, проведённых из точки B, – в точках B2 и B3. Тогда прямоугольные треугольники BOB2, BOB3, AOB1 и CO1 равны по катету (радиус этой окружности) и гипотенузе (радиус описанной окружности треугольника ABC). Поэтому ∠B2BB3 = ∠OAC + ∠OCA. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|