ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 108249
УсловиеОкружность с центром O, вписанная в треугольник ABC, касается стороны AC в точке K. Вторая окружность, также с центром O, пересекает все стороны треугольника ABC. Пусть E и F – её точки пересечения со сторонами соответственно AB и BC, ближайшие к вершине B; B1 и B2 – точки её пересечения со стороной AC, B1 – ближе к A. Докажите, что точки B, K и точка P пересечения отрезков B2E и B1F лежат на одной прямой. Решение Пусть L и M – точки касания вписанной окружности треугольника ABC со сторонами AB и BC соответственно. Тогда
AK = AL, BL = BM, CM = CK. Следовательно, то есть точки P1 и P2 совпадают. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|