ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109521
Темы:    [ Простые числа и их свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Натуральное число n таково, что числа  2n + 1  и  3n + 1  являются квадратами. Может ли при этом число  5n + 3  быть простым?


Решение

  Если  2n + 1 = k²,  3n + 1 = m²,  то  5n + 3 = 4(2n + 1) – (3n + 1) = 4k² – m² = (2k + m)(2k – m).
  Докажем, что  2k – m ≠ 1.  Действительно, в противном случае  5n + 3 = 2m + 1  и   (m – 1)² = m² – (2m + 1) + 2 = (3n + 1) – (5n + 3) + 2 = – 2n < 0,  что невозможно).


Ответ

Не может.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1993
Этап
Вариант 5
класс
Класс 9
задача
Номер 93.5.9.1
олимпиада
Название Всероссийская олимпиада по математике
год
Год 1993
Этап
Вариант 5
класс
Класс 11
задача
Номер 93.5.11.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .