ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 109813
УсловиеВ кабинете президента стоят 2004 телефона, любые два из которых соединены проводом одного из четырёх цветов. Известно, что провода всех четырёх цветов присутствуют. Всегда ли можно выбрать несколько телефонов так, чтобы среди соединяющих их проводов встречались провода ровно трех цветов? Решение Построим граф, вершины которого соответствуют телефонам, а рёбра – проводам. Рассмотрим наименьший такой набор вершин данного графа, что среди соединяющих эти вершины рёбер присутствуют рёбра всех четырёх цветов. Удалим из этого набора произвольную вершину. Поскольку набор был наименьший, среди рёбер, соединяющих оставшиеся вершины, присутствуют уже не все цвета. ОтветВсегда. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|