ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 109872
УсловиеМожно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом? РешениеДопустим, что нашлись числа a1, a2, ..., a1995, которые можно расставить требуемым образом. Пусть число ak (k = 1, 2, ..., 1995) представляется в виде произведения nk простых сомножителей (не обязательно различных). Так как каждые два соседние числа отличаются друг от друга одним простым множителем, то для каждого k = 1, 2, ..., 1994 числа nk и nk+1 отличаются на единицу, то есть имеют разную чётность. Значит, числа n1, n3, ..., n1995 должны быть одной чётности. С другой стороны, числа a1995 и a1 также соседние, поэтому n1995 и n1 должны иметь разную чётность. Противоречие. ОтветНельзя. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|