ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 109939
УсловиеИз бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка – черная, соответственно белым, если клетка белая. Пусть A – количество черных отрезков на периметре, B – количество белых, и пусть многоугольник состоит из a черных и b белых клеток. Докажите, что A-B=4(a-b) .РешениеПосчитаем стороны всех клеток, составляющих многоугольник, следующим образом: из количества сторон черных клеток вычтем количество сторон белых клеток. Эта величина равна 4(a-b) , так как у каждой клетки четыре стороны, в то же время каждый отрезок, лежащий внутри многоугольника, был посчитан один раз со знаком + и один раз – со знаком - . То есть полученная величина равна сумме отрезков периметра с соответствующими знаками: + для черных и - для белых, откуда и получаем требуемое равенство. Задачу можно решать по индукции, при доказательстве индуктивного перехода отбрасывая от многоугольника одну граничную клетку. При этом многоугольник может развалиться на несколько, и удобнее доказывать формулу не для одного многоугольника, а для совокупности. Число вариантов расположения отбрасываемой клетки может быть доведено до двух:, (с тремя сторонами, выходящими на периметр, и с двумя). Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|