ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 110186
Темы:    [ Свойства разверток ]
[ Симметричная стратегия ]
[ Куб ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать?

Решение

Опишем стратегию второго.

Заметим, что по каждой клетке проходят ровно два кольца, пересекающиеся, кроме нее, еще по одной клетке на противоположной грани. Назовем такие клетки соответствующими. Разобьем числа на пары с суммой 25: (1, 24) , (2, 23) , (12,13).

Если первый игрок своим очередным ходом ставит в клетку некоторое число, то пусть второй игрок ставит в ответ парное число в соответствующую клетку.
При такой стратегии второго по окончании игры в каждом кольце окажутся по два числа из четырех пар, поэтому их сумма равна 4· 25 = 100.

Ответ

Не сможет.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2005
Этап
Вариант 4
1
Класс
Класс 9
задача
Номер 05.4.9.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .