ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 110214
УсловиеВ каждую клетку бесконечной клетчатой плоскости записано одно из чисел 1, 2, 3, 4 так, что каждое число встречается хотя бы один раз. Назовём клетку правильной, если количество различных чисел, записанных в четыре соседние (по стороне) с ней клетки, равно числу, записанному в эту клетку. Могут ли все клетки плоскости оказаться правильными? Решение Предположим, что при некоторой расстановке чисел все клетки оказались правильными. Без ограничения общности, пусть 2 записано в F, а 3 – в H. Рассматривая клетку H, получаем, что в клетку P записано число 2. Но в этом случае у клетки F с числом 2 в соседних клетках три различных числа. Противоречие. ОтветНе могут. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|