ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 111922
Темы:    [ Треугольник Паскаля и бином Ньютона ]
[ НОД и НОК. Взаимная простота ]
[ Сочетания и размещения ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Автор: Фольклор

Докажите, что при любых натуральных  0 < k < m < n  числа    и    не взаимно просты.


Решение

Согласно задаче 60413 а)     . Но      Поэтому    и    не взаимно просты.

Замечания

8-9 кл. – 9 баллов, 10-11 кл. – 8 баллов.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 72
Год 2009
Класс
Класс 10
задача
Номер 6
олимпиада
Название Турнир городов
Турнир
Дата 2008/2009
Номер 30
вариант
Вариант весенний тур, сложный вариант, 8-9 класс
задача
Номер 7
олимпиада
Название Турнир городов
Турнир
Дата 2008/2009
Номер 30
вариант
Вариант весенний тур, сложный вариант, 10-11 класс
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .