Страница: 1
2 >> [Всего задач: 7]
Задача
64519
(#1)
|
|
Сложность: 3+ Классы: 8,9,10
|
Вася и Петя играют в следующую игру. На доске написаны два числа: 1/2009 и 1/2008. На каждом ходу Вася называет любое число x, а Петя увеличивает одно из чисел на доске (какое захочет) на x. Вася выигрывает, если в какой-то момент одно из чисел на доске станет равным 1. Сможет ли Вася выиграть, как бы ни действовал Петя?
Задача
64520
(#2)
|
|
Сложность: 4- Классы: 8,9,10
|
а) Докажите, что найдётся многоугольник, который можно разделить отрезком на две равные части так, что этот отрезок разделит одну из сторон многоугольника пополам, а другую – в отношении 1 : 2.
б) Найдётся ли выпуклый многоугольник с таким свойством?
|
|
Сложность: 4- Классы: 8,9,10
|
В каждой клетке квадрата 101×101, кроме центральной,
стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает
извне в произвольную клетку на границе квадрата, после чего ездит
параллельно сторонам клеток, придерживаясь двух правил:
1) в клетке со знаком "прямо" она продолжает путь в том же направлении;
2) в клетке со знаком "поворот" она поворачивает на 90°
(в любую сторону по своему выбору).
Центральную клетку квадрата занимает дом. Можно ли расставить знаки так, чтобы у машинки не было возможности врезаться в дом?
|
|
Сложность: 4- Классы: 9,10
|
Дана такая возрастающая бесконечная последовательность натуральных чисел
a1, ...,
an, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией?
Задача
64523
(#5)
|
|
Сложность: 4 Классы: 8,9,10
|
Замок обнесён круговой стеной с девятью башнями, на которых дежурят рыцари. По истечении каждого часа все они переходят на соседние башни, причём каждый рыцарь движется либо все время по часовой стрелке, либо против. За ночь каждый рыцарь успевает подежурить на каждой башне. Известно, что был час, когда на каждой башне дежурили хотя бы два рыцаря, и был час, когда ровно на пяти башнях дежурили ровно по одному рыцарю. Докажите, что был час, когда на одной из башен вообще не было рыцарей.
Страница: 1
2 >> [Всего задач: 7]