ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 115459
УсловиеТом Сойер взялся покрасить очень длинный забор, соблюдая условие: любые две доски, между которыми ровно две, ровно три или ровно пять досок, должны быть окрашены в разные цвета. Какое наименьшее количество красок потребуется Тому для этой работы?РешениеДвух красок (скажем, белой и красной) не хватит: покрасив доску номер 1 в белый цвет, Том будет вынужден покрасить в красный цвет доски с номерами 4 , 5 и 7 . Тогда между красными досками номер 4 и номер 7 будет ровно две доски, что нарушает требование условия.Трёх красок достаточно: Том может покрасить три доски подряд в белый цвет, потом три доски в синий, потом три — в красный, потом снова три — в белый и так далее. При этом между одинаково окрашенными досками будет либо не более одной доски (если они в одной тройке), либо не менее шести (если они в разных тройках), так что условие задачи будет выполнено. Ответ3 краски.Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|