ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 202]      



Задача 30314

Темы:   [ Перебор случаев ]
[ Правило произведения ]
Сложность: 2
Классы: 5,6,7

а) В магазине "Все для чая" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?

б) В магазине есть еще 4 чайные ложки. Сколькими способами можно купить комплект из чашки, блюдца и ложки?

в) В магазине по-прежнему продается 5 чашек, 3 блюдца и 4 чайные ложки. Сколькими способами можно купить два предмета с разными названиями?

Прислать комментарий     Решение


Задача 103893

Тема:   [ Перебор случаев ]
Сложность: 2
Классы: 6

Кузнечик прыгает вдоль прямой вперёд на 80 см или назад на 50 см. Может ли он менее чем за 7 прыжков удалиться от начальной точки ровно на 1 м 70 см?

Прислать комментарий     Решение


Задача 116964

Тема:   [ Перебор случаев ]
Сложность: 2
Классы: 6,7,8

Автор: Шноль Д.Э.

Дима увидел в музее странные часы (см. рисунок). Они отличаются от обычных часов тем, что на их циферблате нет цифр и вообще непонятно, где у часов верх; да ещё секундная, минутная и часовая стрелки имеют одинаковую длину. Какое время показывали часы?
(Стрелки А и Б на рисунке смотрят ровно на часовые отметки, а стрелка В чуть-чуть не дошла до часовой отметки.)

Прислать комментарий     Решение

Задача 78204

Темы:   [ Перебор случаев ]
[ Раскладки и разбиения ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 8,9

Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.)

Прислать комментарий     Решение

Задача 103874

Темы:   [ Перебор случаев ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 6,7

Айрат выписал подряд все числа месяца: 123456789101112... и покрасил три дня (дни рождения своих друзей), никакие два из которых не идут подряд. Оказалось, что все непокрашенные участки состоят из одинакового количества цифр. Докажите, что первое число месяца покрашено.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 202]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .