ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 115899
Темы:    [ Описанные четырехугольники ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 4
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Четырёхугольник ABCD описан около окружности, лучи BA и CD пересекаются в точке E, лучи BC и AD – в точке F. Вписанная окружность треугольника, образованного прямыми AB, CD и биссектрисой угла B, касается прямой AB в точке K, а вписанная окружность треугольника, образованного прямыми AD, BC и биссектрисой угла B, касается прямой BC в точке L. Докажите, что прямые KL, AC и EF пересекаются в одной точке.


Решение

  Обозначим точки касания вписанной в четырёхугольник ABCD окружности со сторонами AB и BC через U и V. Имеем равенство двойных отношений:  
  Отсюда следует, что прямые KL, EF, UV пересекаются в одной точке. Аналогично доказывается, что AC, EF, UV пересекаются в одной точке (см. рис.).

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2009
Класс
Класс 9
задача
Номер 9.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .