ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 116581
УсловиеЗа круглым столом сидят 30 человек – рыцари и лжецы (рыцари всегда говорят правду, а лжецы всегда лгут). Известно, что у каждого из них за этим же столом есть ровно один друг, причём у рыцаря этот друг – лжец, а у лжеца этот друг – рыцарь (дружба всегда взаимна). На вопрос "Сидит ли рядом с вами ваш друг?" сидевшие через одного ответили "Да". Сколько из остальных могли также ответить "Да"? РешениеВсе сидящие за столом разбиваются на пары друзей; значит, рыцарей и лжецов поровну. Рассмотрим любую пару друзей. Если они сидят рядом, то рыцарь на заданный вопрос ответит "Да", а лжец – "Нет". Если же они не сидят рядом, то их ответы будут противоположными. В любом случае ровно один из пары друзей даст ответ "Да". Значит, все остальные 15 ответов будут "нет". Ответ0. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|