ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116581
Темы:    [ Математическая логика (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

За круглым столом сидят 30 человек – рыцари и лжецы (рыцари всегда говорят правду, а лжецы всегда лгут). Известно, что у каждого из них за этим же столом есть ровно один друг, причём у рыцаря этот друг – лжец, а у лжеца этот друг – рыцарь (дружба всегда взаимна). На вопрос "Сидит ли рядом с вами ваш друг?" сидевшие через одного ответили "Да". Сколько из остальных могли также ответить "Да"?


Решение

Все сидящие за столом разбиваются на пары друзей; значит, рыцарей и лжецов поровну. Рассмотрим любую пару друзей. Если они сидят рядом, то рыцарь на заданный вопрос ответит "Да", а лжец – "Нет". Если же они не сидят рядом, то их ответы будут противоположными. В любом случае ровно один из пары друзей даст ответ "Да". Значит, все остальные 15 ответов будут "нет".


Ответ

0.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2011-2012
Этап
Вариант 4
Класс
Класс 9
Задача
Номер 9.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .