ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116975
Темы:    [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 5,6,7
В корзину
Прислать комментарий

Условие

Автор: Шноль Д.Э.

Дима разрезал картонный квадрат 8×8 по границам клеток на шесть частей (см. рисунок). Оказалось, что квадрат остался крепким: если положить его на стол и потянуть (вдоль стола) за любую часть в любом направлении, то весь квадрат потянется вместе с этой частью.

Покажите, как разрезать такой квадрат по границам клеток не менее чем на 27 частей, чтобы квадрат оставался крепким и в каждой части было не более 16 клеток.


Решение

Вот примеры разрезания квадрата на 27 частей, 31 часть и 33 части (белая фигура внутри разрезана на единичные квадратики):

Замечания

Каково наибольшее возможное количество частей – пока неизвестно.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада для 6-7 классов
год/номер
Номер 9 (2011 год)
Дата 2011-03-6
класс
Класс 6 класс
задача
Номер 6.9

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .