ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30348
Темы:    [ Классическая комбинаторика (прочее) ]
[ Правило произведения ]
[ Перебор случаев ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 2+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Сколькими способами можно поставить на шахматную доску так, чтобы они не били друг друга
  а) две ладьи;   б) двух королей;  в) двух слонов;   г) двух коней;   д) двух ферзей?
Все фигуры одного цвета.


Подсказка

В п. а) ответ в два раза меньше, чем в задаче 102877, а в п. б) – чем в задаче 30327, поскольку в тех подсчетах каждая позиция учитывалась дважды. В остальных пунктах вычисления аналогичны.


Ответ

a)     б)     способами;   в)     способами;

г)     способами;   д)     способами.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 3
Название Комбинаторика-1
Тема Классическая комбинаторика
задача
Номер 039

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .