ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30792
Темы:    [ Деревья ]
[ Степень вершины ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

В некоторой стране 30 городов, причём каждый соединён с каждым дорогой.
Какое наибольшее число дорог можно закрыть на ремонт так, чтобы из каждого города можно было проехать в любой другой?


Подсказка

См. задачи 87972 а) и 30791.


Ответ

30·29 : 2 – 29 = 406.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 13
Название Графы-2
Тема Теория графов
задача
Номер 014

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .