ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52763
Темы:    [ Биссектриса угла ]
[ Теорема Пифагора (прямая и обратная) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

На плоскости дан угол величины 60°. Окружность касается одной стороны этого угла, пересекает другую сторону в точках A и B и пересекает биссектрису угла в точках C и D.  AB = CD = .  Найдите площадь круга, ограниченного этой окружностью.


Решение

  Пусть K – вершина угла, O – центр окружности, R – её радиус, М – точка касания со стороной угла, L – середина хорды CD.
  Из условия ясно, что KO – биссектриса угла AOC, то есть  ∠OKC = 15°.  Значит,  ∠OKM = 45°,  OM = R  или  R²(1 – cos 30°) = R² – 3/2,  откуда  


Ответ

π.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 428

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .