Страница: 1
2 3 4 5 6 7 >> [Всего задач: 64]
На продолжении стороны AD прямоугольника ABCD за точку D
взята точка E, причём DE = 0,5 AD, ∠BEC = 30°.
Найдите отношение сторон прямоугольника ABCD.
Сторона AD прямоугольника ABCD равна 2. На продолжении стороны AD за точку A взята точка E, причём EA = 1, ∠BEC = 30°. Найдите BE.
|
|
Сложность: 3+ Классы: 8,9,10
|
Укажите все выпуклые четырехугольники, у которых суммы синусов противолежащих углов равны.
В трапеции ABCD углы A и D прямые, AB = 1, CD = 4, AD = 5. На стороне AD взята точка M так, что ∠CMD = 2∠BMA.
В каком отношении точка M делит сторону AD?
|
|
Сложность: 3+ Классы: 10,11
|
Дан выпуклый семиугольник. Выбираются четыре произвольных его угла и вычисляются их синусы, от остальных трёх углов вычисляются косинусы. Оказалось, что сумма таких семи чисел не зависит от изначального выбора четырёх углов. Докажите, что у этого семиугольника найдутся четыре равных угла.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 64]