ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 53203
Темы:    [ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В прямоугольном треугольнике ABC с острым углом 30° проведена высота CD из вершины прямого угла C.
Найдите расстояние между центрами вписанных окружностей треугольников ACD и BCD, если меньший катет треугольника ABC равен 1.


Подсказка

Треугольник с вершинами в точке D и в центрах окружностей подобен исходному прямоугольный.


Решение

  Пусть  ∠A = 30°,  O, O1 и O2 – центры вписанных окружностей треугольников ABC, BDC и ADC.
  Заметим, что  O1O2 =   (см. решение задачи 53583).
  Радиус r вписанной окружности треугольника ABC равен    а  


Ответ

$ {\frac{\sqrt{3} - 1}{\sqrt{2}}}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 898

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .