ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 53983
Темы:    [ Пятиугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Окружность вписана в пятиугольник со сторонами, равными a, b, c, d и e. Найдите отрезки, на которые точка касания делит сторону, равную a.


Подсказка

Обозначьте один из искомых отрезков через x и примените теорему о равенстве отрезков касательных, проведённых к окружности из одной точки.


Ответ

$ {\frac{e-d+c-b+a}{2}}$, $ {\frac{a-e+d-c+b}{2}}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1747

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .