ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55706
Темы:    [ Свойства симметрии и центра симметрии ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Докажите, что четырёхугольник, имеющий центр симметрии,— параллелограмм.


Подсказка

Если диагонали четырёхугольника пересекаются и делятся точкой пересечения пополам, то этот четырёхугольник — параллелограмм.


Решение

Пусть O — центр симметрии четырёхугольника ABCD. Поскольку при движении прямая переходит в прямую, то точка пересечения двух прямых переходит в точку пересечения их образов. Следовательно, вершина четырёхугольника переходит в вершину.

Предположим, что вершина A переходит в соседнюю вершину B. Тогда центр O симметрии — середина отрезка AB, а т.к. при этом вершины C и D — симметричны относительно точки O, то отрезки AB и CD пересекаются, что невозможно.

Таким образом, вершина A переходит в вершину C, а вершина B — в D. Тогда диагонали AC и BD четырёхугольника пересекаются в точке O и делятся ею пополам. Следовательно, ABCD — параллелограмм.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 5701
книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 16
Название Центральная симметрия
Тема Центральная симметрия
параграф
Номер 0
Название Вводные задачи
Тема Центральная симметрия (прочее)
задача
Номер 16.000.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .