ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56473
Темы:    [ Признаки и свойства равнобедренного треугольника. ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 9
В корзину
Прислать комментарий

Условие

Длины двух сторон треугольника равны a, а длина третьей стороны равна b. Вычислите радиус его описанной окружности.


Решение

Пусть O – центр описанной окружности равнобедренного треугольника ABC, B1 – середина основания AC, A1 – середина боковой стороны BC. Так как треугольники BOA1 и BCB1 подобны, то  BO : BA1 = BC : BB1,  а значит,   R = BO =

Замечания

Можно также использовать формулу  R = abc/4S.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 2
Название Отношение сторон подобных треугольников
Тема Отношения линейных элементов подобных треугольников
задача
Номер 01.018

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .