ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56532
Темы:    [ Трапеции (прочее) ]
[ Две пары подобных треугольников ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Продолжения боковых сторон трапеции с основаниями AD и BC пересекаются в точке O. Концы отрезка EF, параллельного основаниям и проходящего через точку пересечения диагоналей, лежат соответственно на сторонах AB и CD. Докажите, что  AE : CF = AO : CO.


Решение

Пусть  AD = a,  BC = b  и  a > b.  Согласно задаче 53748  EF = 2ab/a+b.  Из подобия треугольников AOD, BOC и EOF получаем, что     что и требовалось.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 7
Название Задачи для самостоятельного решения
Тема Подобные треугольники (прочее)
задача
Номер 01.076

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .