ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 56838
Условиеа) На стороне AB треугольника ABC взята точка P. Пусть r, r1 и r2 — радиусы вписанных окружностей треугольников ABC, BCP и ACP; h — высота, опущенная из вершины C. Докажите, что r = r1 + r2 - 2r1r2/h.б) Точки A1, A2, A3,... лежат на одной прямой (в указанном порядке). Докажите, что если радиусы вписанных окружностей всех треугольников BAiAi + 1 равны одному и тому же числу r1, то радиусы вписанных окружностей всех треугольников BAiAi + k равны одному и тому же числу rk. Решениеа) Пусть x1 = BP и x2 = AP. Тогда r1 =б) Согласно задаче а) rk + 1 = r1 + rk - Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |