Страница: 1
2 3 4 >> [Всего задач: 17]
|
|
Сложность: 2+ Классы: 7,8,9
|
На сторонах
BC,
CA и
AB треугольника
ABC взяты
точки
A1,
B1 и
C1, причем
AC1 =
AB1,
BA1 =
BC1 и
CA1 =
CB1.
Докажите, что
A1,
B1 и
C1 — точки касания вписанной
окружности со сторонами.
Пусть
Oa,
Ob и
Oc — центры вневписанных
окружностей треугольника
ABC. Докажите, что точки
A,
B и
C — основания высот треугольника
OaObOc.
Докажите, что сторона
BC треугольника
ABC видна из
центра
O вписанной окружности под углом
90
o +
A/2, а из
центра
Oa вневписанной окружности под углом
90
o -
A/2.
Докажите, что точки, симметричные точке пересечения
высот треугольника
ABC относительно его сторон, лежат
на описанной окружности.
Внутри треугольника
ABC взята такая точка
P, что
PAB :
PAC =
PCA :
PCB =
PBC :
PBA =
x. Докажите, что
x = 1.
Страница: 1
2 3 4 >> [Всего задач: 17]