ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57138
Тема:    [ ГМТ - прямая или отрезок ]
Сложность: 4+
Классы: 8,9
В корзину
Прислать комментарий

Условие

а) Дан параллелограмм ABCD. Докажите, что величина  AX2 + CX2 - BX2 - DX2 не зависит от выбора точки X.
б) Четырехугольник ABCD не является параллелограммом. Докажите, что все точки X, удовлетворяющие соотношению  AX2 + CX2 = BX2 + DX2, лежат на одной прямой, перпендикулярной отрезку, соединяющему середины диагоналей.

Решение

Пусть P и Q — середины диагоналей AC и BD. Тогда  AX2 + CX2 = 2PX2 + AC2/2 и  BX2 + DX2 = 2QX2 + BD2/2 (см. задачу 12.11, а)), поэтому в задаче б) искомое ГМТ состоит из таких точек X, что  PX2 - QX2 = (BD2 - AC2)/4, а в задаче a) P = Q, поэтому рассматриваемая величина равна  (BD2 - AC2)/2.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 7
Название Геометрические места точек
Тема Геометрические Места Точек
параграф
Номер 1
Название ГМТ - прямая или отрезок
Тема ГМТ - прямая или отрезок
задача
Номер 07.010

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .