ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57661
Темы:    [ Метод координат на плоскости ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Диаметры AB и CD окружности S перпендикулярны. Хорда EA пересекает диаметр CD в точке K, хорда EC пересекает диаметр AB в точке L. Докажите, что если CK : KD = 2 : 1, то AL : LB = 3 : 1.

Решение

Возьмем на отрезках AB и CD точки K и L, делящие их в указанных отношениях. Достаточно доказать, что точка пересечения прямых AK и CL лежит на окружности S. Введем систему координат с началом в центре O окружности S и осями Ox и Oy, направленными по лучам OB и OD. Радиус окружности S можно считать равным 1. Прямые AK и CL задаются соответственно уравнениями  y = (x+1)/3 и y = 2x - 1. Поэтому их общая точка имеет координаты x0 = 4/5 и y0 = 3/5. Ясно, что  x02 + y02 = 1.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 12
Название Вычисления и метрические соотношения
Тема Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
параграф
Номер 10
Название Метод координат
Тема Метод координат
задача
Номер 12.076

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .