ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58022
Тема:    [ Центр поворотной гомотетии ]
Сложность: 3+
Классы: 9
В корзину
Прислать комментарий

Условие

Постройте центр O поворотной гомотетии с данным коэффициентом k$ \ne$1, переводящей прямую l1 в прямую l2, а точку A1 лежащую на l1, — в точку A2.

Решение

Пусть P — точка пересечения прямых l1 и l2. Согласно задаче 19.41 точка O лежит на описанной окружности S1 треугольника A1A2P. С другой стороны, OA2 : OA1 = k. Геометрическим местом точек X, для которых XA2 : XA1 = k, является окружность S2 (задача 7.14). Точка O является точкой пересечения окружностей S1 и S2 (таких точек две).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 19
Название Гомотетия и поворотная гомотетия
Тема Гомотетия и поворотная гомотетия
параграф
Номер 6
Название Центр поворотной гомотетии
Тема Центр поворотной гомотетии
задача
Номер 19.043

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .