ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58175
Темы:    [ Эйлерова характеристика ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 5+
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Выпуклый многоугольник разрезан на p треугольников так, что на их сторонах нет вершин других треугольников. Пусть n и m — количества вершин этих треугольников, лежащих на границе исходного многоугольника и внутри его.
а) Докажите, что p = n + 2m - 2.
б) Докажите, что количество отрезков, являющихся сторонами полученных треугольников, равно 2n + 3m - 3.

Решение

а) С одной стороны, сумма всех углов полученных треугольников равна p$ \pi$. С другой стороны, она равна (n - 2)$ \pi$ + 2m$ \pi$. Поэтому p = n + 2m - 2.
б) Воспользуемся результатом задачи 23.15. В рассматриваемой ситуации p = n + 2m - 2 и r = n + m; требуется вычислить q. Согласно формуле Эйлера q = p + r - 1 = 2n + 3m - 3.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 23
Название Делимость, инварианты, раскраски
Тема Неопределено
параграф
Номер 3
Название Инварианты
Тема Инварианты
задача
Номер 23.015B

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .