ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58200
Тема:    [ Вспомогательная раскраска (прочее) ]
Сложность: 4+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Многоугольник разрезан непересекающимися диагоналями на треугольники. Докажите, что вершины многоугольника можно раскрасить в три цвета так, что все вершины каждого из полученных треугольников будут разного цвета.

Решение

Доказательство аналогично решению задачи 23.39. Главное отличие заключается в том, что выбрасывать нужно треугольник, выходящий двумя сторонами на границу многоугольника (см. задачу 22.25).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 23
Название Делимость, инварианты, раскраски
Тема Неопределено
параграф
Номер 6
Название Задачи о раскрасках
Тема Вспомогательная раскраска (прочее)
задача
Номер 23.040

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .