Страница: 1
2 3 4 5 6 7 >> [Всего задач: 62]
|
|
Сложность: 3- Классы: 7,8,9
|
На клетчатой бумаге отмечены произвольным образом
2000 клеток. Докажите, что среди них
всегда можно выбрать не менее 500 клеток,
попарно не соприкасающихся друг с другом
(соприкасающимися считаются клетки,
имеющие хотя бы одну общую вершину).
|
|
Сложность: 3 Классы: 8,9,10
|
На каждой клетке доски размером 9×9 сидит жук, По свистку каждый из жуков переползает в одну из соседних по диагонали клеток. При этом в некоторых клетках может оказаться больше одного жука, а некоторые клетки окажутся незанятыми.
Докажите, что при этом незанятых клеток будет не меньше 9.
На клетчатой бумаге даны произвольные
n клеток.
Докажите, что из них можно выбрать не менее
n/4 клеток,
не имеющих общих точек.
Плоскость раскрашена в три цвета. Докажите, что
найдутся две точки одного цвета, расстояние между которыми равно 1.
|
|
Сложность: 3 Классы: 8,9,10,11
|
В каждой клетке полоски длины 100 стоит по фишке.
Можно за 1 рубль поменять местами любые две соседние фишки, а также можно бесплатно поменять местами любые две фишки, между которыми стоят ровно три фишки.
За какое наименьшее количество рублей можно переставить фишки в обратном порядке?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 62]