ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58442
Тема:    [ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 10,11
В корзину
Прислать комментарий

Условие

Окружность пересекает прямые BC, CA, AB в точках A1 и A2, B1 и B2, C1 и C2. Пусть la — прямая, соединяющая точки пересечения прямых BB1 и CC2, BB2 и CC1; прямые lb и lc определяются аналогично. Докажите, что прямые la, lb и lc пересекаются в одной точке (или параллельны).

Решение

Согласно теореме Паскаля точки пересечения прямых A1B2 и C1C2, B1C2 и A1A2, C1A1 и B1B2 лежат на одной прямой. Переведем эту прямую на бесконечность. После этого можно воспользоваться результатом задачи 14.13.1.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 30
Название Проективные преобразования
Тема Проективная геометрия
параграф
Номер 3
Название Переведем данную прямую на бесконечность
Тема Переведем данную прямую на бесконечность
задача
Номер 30.034.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .