ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58523
Тема:    [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11
В корзину
Прислать комментарий

Условие

Докажите, что любая гипербола, проходящая через вершины треугольника ABC и точку пересечения его высот, является гиперболой с перпендикулярными асимптотами.

Решение

Согласно задаче 31.045 линейная комбинация уравнений гипербол с перпендикулярными асимптотами тоже является гиперболой с перпендикулярными асимптотами. В пучке же коник, проходящих через A, B, C и H, есть две вырожденные коники с перпендикулярными асимптотами: lABlCH и lBClAH. Следовательно, согласно задаче 31.051 все коники этого пучка будут гиперболами с перпендикулярными асимптотами.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 31
Название Эллипс, парабола, гипербола
Тема Неопределено
параграф
Номер 5
Название Пучки коник
Тема Кривые второго порядка
задача
Номер 31.056

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .