ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60465
Темы:    [ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8
В корзину
Прислать комментарий

Условие

Докажите, что для любого натурального n найдутся n подряд идущих натуральных чисел, среди которых ровно одно простое.


Решение

Согласно задаче 34990 найдутся n подряд идущих составных чисел. Рассмотрим наименьшее простое число p, большее всех этих чисел (такое существует согласно задаче 30410). Тогда числа  p – n + 1,  p – n + 2,  ...,  p – 1,  p – искомые.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 1
Название Простые числа
Тема Основная теорема арифметики. Разложение на простые сомножители
задача
Номер 03.013

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .