ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60622
Темы:    [ Числа Фибоначчи ]
[ Цепные (непрерывные) дроби ]
[ Алгоритм Евклида ]
Сложность: 4-
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Докажите, что при  k ≥ 1  выполняется равенство:   = [aFk; aFk–1, ..., aF0],   где {Fk} – последовательность чисел Фибоначчи.


Подсказка

Примените алгоритм Евклида к многочленам  aFk+2 – 1  и  aFk+1 – 1.


Решение

Заметим, что  aFk+2 – 1 = aFk+1+Fk – 1 = (aFk+1 – 1)aFk + aFk – 1.  Дальнейшее следует из задачи 60597.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 5
Название Цепные дроби
Тема Цепные (непрерывные) дроби
задача
Номер 03.170

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .