ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 60913
УсловиеЗадача Иосифа Флавия. n человек выстраиваются по кругу и нумеруются числами от 1 до n. Затем из них исключается каждый второй до тех пор, пока не останется только один человек. Например, если n = 10, то порядок исключения таков: 2, 4, 6, 8, 10, 3, 7, 1, 9, так что остается номер 5. Для данного n будем обозначать через J(n) номер последнего оставшегося человека. Докажите, чтоа) J(2n) = 2J(n) - 1; б) J(2n + 1) = 2J(n) + 1; в) если n = (1bm - 1bm - 2...b1b0)2, то J(n) = (bm - 1bm - 2...b1b01)2. Решениеа) Если по кругу стоят числа 1, 2, ..., 2n, то вначале вычеркиваются все четные числа. Оставшиеся числа 1, 3, 5, ..., 2n - 1 снова подвергаются процедуре вычеркивания. k-ое число в этом списке имеет вид 2k - 1. После того, как из этого списка будут вычеркнуты все числа кроме одного, останется число с номером J(n), которое равно 2J(n) - 1.Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|