ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64401
Темы:    [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы:
В корзину
Прислать комментарий

Условие

Окружность k проходит через вершины B и C треугольника ABC  (AB > AC)  и пересекает продолжения сторон AB и AC за точки B и C в точках P и Q соответственно. Пусть AA1 – высота треугольника ABC. Известно, что  A1P = A1Q.  Докажите, что угол PA1Q в два раза больше угла A треугольника ABC.


Решение

Поскольку  ∠A1AP = 90° – ∠ABC = 90° – ∠AQP,  луч AA1 проходит через центр O описанной окружности треугольника APQ (см. рис.). Этот центр также лежит на серединном перпендикуляре l к отрезку PQ. Поскольку  AB ≠ AC,  прямые AO и l не параллельны. Но и O и A1 являются их общими точками; значит, A1 совпадает с O. Следовательно, вписанный угол PAQ равен половине центрального угла PA1Q.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2013
класс
Класс 10
задача
Номер 10.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .