Страница: 1
2 3 4 >> [Всего задач: 18]
Окружность k проходит через вершины B и C треугольника ABC (AB > AC) и пересекает продолжения сторон AB и AC за точки B и C в точках P и Q соответственно. Пусть AA1 – высота треугольника ABC. Известно, что A1P = A1Q. Докажите, что угол PA1Q в два раза больше угла A треугольника ABC.
|
|
Сложность: 3+ Классы: 8,9,10
|
Две окружности Ω1 и Ω2 с центрами O1 и O2 касаются внешним образом в точке O. Точки X и Y лежат на Ω1 и Ω2 соответственно так, что лучи O1X и O2Y одинаково направлены. Из точки X проведены касательные к Ω2, а из точки Y – к Ω1. Докажите, что эти четыре прямые касаются одной окружности, проходящей через точку O.
|
|
Сложность: 3+ Классы: 9,10
|
Пусть ABCD – вписанный четырёхугольник. Докажите, что AC > BD тогда и только тогда, когда (AD – BC)(AB – CD) > 0.
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть AP и BQ – высоты данного остроугольного треугольника ABC. Постройте циркулем и линейкой на стороне AB точку M так, чтобы
∠AQM = ∠BPM.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Пусть ABCD – трапеция, в которой углы A и B прямые,
AB = AD, CD = BC + AD, BC < AD.
Докажите, что угол ADC в два раза больше угла ABE, где E – середина AD.
Страница: 1
2 3 4 >> [Всего задач: 18]