ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 64743
УсловиеКаждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2. Решение Пусть R – радиус окружностей, O – центр ω2, P – точка на ω1, диаметрально противоположная к O, а A' – точка касания AC и ω2. Так как CO – биссектриса угла ACB, точки A и B симметричны относительно прямой OP. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|