ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64848
Темы:    [ Произведения и факториалы ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Можно ли все натуральные делители числа 100! (включая 1 и само число) разбить на две группы так, чтобы в обеих группах было одинаковое количество чисел и произведение чисел первой группы равнялось произведению чисел второй группы?


Решение

100! делится на 31³, но не делится на 314. Поэтому все множители числа 100! можно разбить на четвёрки вида  {n, 31n, 31²n, 31³n},  где n – произвольный делитель числа     Из каждой такой четвёрки числа n и 31³n поместим в одну группу, а числа 31n и 31²n – в другую.


Ответ

Можно.

Замечания

6 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 36
Дата 2014/15
вариант
Вариант осенний тур, сложный вариант, 8-9 класс
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .