ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 64846  (#1)

Темы:   [ Числовые таблицы и их свойства ]
[ Арифметическая прогрессия ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Дана квадратная таблица. В каждой её клетке стоит либо плюс, либо минус, причём всего плюсов и минусов поровну.
Докажите, что или в каких-то двух строках, или в каких-то двух столбцах одинаковое количество плюсов.

Прислать комментарий     Решение

Задача 64847  (#2)

Темы:   [ Вписанные и описанные многоугольники ]
[ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3+
Классы: 8,9

Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник.

Прислать комментарий     Решение

Задача 64848  (#3)

Темы:   [ Произведения и факториалы ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Можно ли все натуральные делители числа 100! (включая 1 и само число) разбить на две группы так, чтобы в обеих группах было одинаковое количество чисел и произведение чисел первой группы равнялось произведению чисел второй группы?

Прислать комментарий     Решение

Задача 64849  (#4)

Темы:   [ Перестановки и подстановки (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10

На кольцевой дороге через равные промежутки расположены 25 постов, на каждом стоит полицейский. Полицейские пронумерованы в каком-то порядке числами от 1 до 25. Требуется, чтобы они перешли по дороге так, чтобы снова на каждом посту был полицейский, но по часовой стрелке за номером 1 стоял номер 2, за номером 2 стоял номер 3, ..., за номером 25 стоял номер 1. Докажите, что если организовать переход так, чтобы суммарное пройденное расстояние было наименьшим, то кто-то из полицейских останется на своём посту.

Прислать комментарий     Решение

Задача 64850  (#5)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла (ГМТ) ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Внутри прямоугольного треугольника построили две равные окружности так, что первая касается одного из катетов и гипотенузы, вторая касается другого катета и гипотенузы, а ещё эти окружности касаются друг друга. Пусть M и N – точки касания окружностей с гипотенузой. Докажите, что середина отрезка MN лежит на биссектрисе прямого угла треугольника.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .