ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64951
Темы:    [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10
В корзину
Прислать комментарий

Условие

Сумма десяти натуральных чисел равна 1001. Какое наибольшее значение может принимать НОД (наибольший общий делитель) этих чисел?


Решение

  Пример. Рассмотрим девять чисел, равных 91, и число 182. Их сумма равна 1001.

  Оценка. Докажем, что значение, большее 91, НОД принимать не может. Заметим, что  1001 = 7·11·13.  Так как каждое слагаемое в данной сумме делится на НОД, то НОД является делителем числа 1001. С другой стороны, меньшее слагаемое в сумме (а значит и НОД) не больше, чем  1001 : 10,  то есть не больше 101. Осталось заметить, что 91 – наибольший из делителей числа 1001, удовлетворяющий этому условию.


Ответ

91.

Источники и прецеденты использования

олимпиада
Название Окружная олимпиада (Москва)
год
Год 2014
класс
Класс 9
задача
Номер 9.4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .