Страница: 1
2 >> [Всего задач: 6]
Задача
64948
(#9.1)
|
|
Сложность: 3 Классы: 8,9,10
|
В круговом шахматном турнире участвовало шесть человек: два мальчика и четыре девочки. Могли ли мальчики по итогам турнира набрать в два раза больше очков, чем девочки? (В круговом шахматном турнире каждый игрок играет с каждым по одной
партии. За победу дается 1 очко, за ничью – 0,5, за поражение – 0).
Задача
64949
(#9.2)
|
|
Сложность: 3 Классы: 8,9,10
|
Про коэффициенты a, b, c и d двух квадратных трёхчленов x² + bx + c и x² + ax + d известно, что 0 < a < b < c < d.
Могут ли эти трёхчлены иметь общий корень?
Задача
64950
(#9.3)
|
|
Сложность: 3+ Классы: 8,9,10
|
Дан треугольник ABC. Прямая, параллельная AC, пересекает стороны AB и BC в точках P и T соответственно, а медиану AM – в точке Q. Известно, что PQ = 3, а QT = 5. Найдите длину AC.
Задача
64951
(#9.4)
|
|
Сложность: 3+ Классы: 9,10
|
Сумма десяти натуральных чисел равна 1001. Какое наибольшее значение может принимать НОД (наибольший общий делитель) этих чисел?
Задача
64952
(#9.5)
|
|
Сложность: 3+ Классы: 8,9,10
|
Четырёхугольник ABCD – вписанный. На его диагоналях AC и BD отметили точки K и L соответственно так, что AK = AB и DL = DC.
Докажите, что прямые KL и AD параллельны.
Страница: 1
2 >> [Всего задач: 6]