ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65011
Темы:    [ Построения с помощью двусторонней линейки ]
[ Ромбы. Признаки и свойства ]
[ Отношение, в котором биссектриса делит сторону ]
[ Трапеции (прочее) ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Дан треугольник ABC. С помощью двусторонней линейки, проведя не более восьми линий, постройте на стороне AB такую точку D, что
AD : BD = BC : AC.


Решение

Проведём прямые a, b, c, параллельные BC, CA, AB и лежащие от них на расстоянии ширины линейки с внешней стороны треугольника. Прямые a, b, BC, AC образуют ромб, диагональ которого является биссектрисой угла C. Пусть E – точка пересечения этой биссектрисы с прямой c, а F – точка пересечения диагоналей трапеции, образованной прямыми c, AB, AC и BC (см. рис.). Тогда прямая EF пересекает AB в искомой точке D.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2010
тур
задача
Номер 10

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .