ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65078
Темы:    [ Четырехугольники (прочее) ]
[ Вспомогательные равные треугольники ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

В четырёхугольнике ABCD сторона AB равна диагонали AC и перпендикулярна стороне AD, а диагональ AC перпендикулярна стороне CD. На стороне AD взята такая точка K , что  AC = AK.  Биссектриса угла ADC пересекает BK в точке M. Найдите угол ACM.


Решение

Поскольку треугольник BAK – прямоугольный равнобедренный,  ∠AKB = 45°.  Пусть биссектриса угла CAD пересекает отрезок BK в точке N. Треугольники ANK и ANС равны: AN – общая сторона,  AC = AK,  ∠CAN = ∠KAN.  Поэтому  ∠NCA = ∠NKA = 45°.  Значит, CN – биссектриса прямого угла ACD, а N – точка пересечения биссектрис треугольника ACD. Таким образом, точка N лежит на биссектрисе угла ACD и на отрезке BK, то есть совпадает с точкой M. Следовательно,  ∠ACM = ∠ACN = 45°.


Ответ

45°.

Источники и прецеденты использования

олимпиада
Название Олимпиада имени Леонарда Эйлера (для 8 классов)
год/номер
Номер 2 (2010)
тур
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .