Страница: 1
2 3 4 5 6 7 >> [Всего задач: 77]
Дан равнобедренный треугольник ABC (AB = AC). На меньшей дуге AB описанной около него окружности взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат в одной полуплоскости относительно BC. Описанная окружность треугольника BDE пересекает сторону AB в точке F. Докажите, что прямые EF и BC параллельны.
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
В ряд лежат 100 внешне одинаковых монет. Среди них ровно 26 фальшивых, причём они лежат подряд. Настоящие монеты весят одинаково, фальшивые – не обязательно одинаково, но они легче настоящих. Как за одно взвешивание на двухчашечных весах без гирь найти хотя бы одну фальшивую монету?
В клетках таблицы 4×4 записаны числа так, что сумма соседей у каждого числа равна 1 (соседними считаются клетки, имеющие общую сторону).
Найдите сумму всех чисел таблицы.
|
|
Сложность: 3 Классы: 9,10,11
|
Высотой пятиугольника назовём отрезок перпендикуляра, опущенного из вершины на противоположную сторону, а медианой – отрезок, соединяющий вершину с серединой противоположной стороны. Известно, что в некотором пятиугольнике равны десять длин – длины всех высот и всех медиан. Докажите, что этот пятиугольник – правильный.
На сторонах единичного квадрата отметили точки K, L, M и N так, что прямая KM параллельна двум сторонам квадрата, а прямая LN – двум другим сторонам квадрата. Отрезок KL отсекает от квадрата треугольник периметра 1. Треугольник какой площади отсекает от квадрата отрезок MN?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 77]