ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65187
Темы:    [ Признаки и свойства параллелограмма ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Внутри параллелограмма ABCD отметили точку E так, что  CD = CE.
Докажите, что прямая DE перпендикулярна прямой, проходящей через середины отрезков AE и BC.


Решение

Пусть F, G и H – середины AE, BC и DE соответственно. Так как FH – средняя линия треугольника AED, то CHFG – параллелограмм (см. рис.). CH – медиана, а значит, и высота равнобедренного треугольника DCE, следовательно,  EDCH || GF.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Год 2015
Номер 78
класс
Класс 8
задача
Номер 2
олимпиада
Название Турнир городов
Турнир
Номер 36
Дата 2014/15
вариант
Вариант весенний тур, сложный вариант, 8-9 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .