ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 65231
УсловиеПрямая l перпендикулярна одной из медиан треугольника. Серединные перпендикуляры к сторонам этого треугольника пересекают прямую l в трёх точках. Докажите, что одна из них является серединой отрезка, образованного двумя оставшимися. Решение Пусть прямая l перпендикулярна медиане BM, а серединные перпендикуляры к сторонам AB, AC, BC пересекают l в точках X, Y и Z (см. рис.). Точки K, M, L – середины этих сторон, O – центр описанной окружности, N – точка пересечения l и BM. Из перпендикулярности прямых следует, что Первый способ. Треугольники YOX и MAB подобны, следовательно, YX : MB = YO : MA. Треугольники
YOZ и MCB также подобны, следовательно, Второй способ. Продлим медиану BM на ее длину (см. риc.). Тогда треугольники BAD и XOZ подобны. Поскольку AM – медиана треугольника BAD и ЗамечанияУтверждение верно для произвольной тройки прямых, перпендикулярных сторонам треугольника и пересекающихся в одной точке. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|