ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65374
Темы:    [ Ортоцентр и ортотреугольник ]
[ Точка Лемуана ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Автор: Креков Д.

В остроугольном неравнобедренном треугольнике ABC высоты AA' и BB' пересекаются в точке H, а медианы треугольника AHB пересекаются в точке M. Прямая CM делит отрезок A'B' пополам. Найдите угол C.


Решение

Пусть C0 – середина AB, а H' – точка, симметричная H относительно C0 (как известно, H' – точка описанной окружности треугольника ABC, диаметрально противоположная C). Медианы CC0 и CM подобных треугольников ABC и A'B'C симметричны относительно биссектрисы угла C. Также симметричны относительно этой биссектрисы высота CH и диаметр описанной окружности CH'. Следовательно,  ∠H'CC0 = ∠MCH,  а значит, CM – симедиана треугольника CHH' (см. рис.). Отсюда   (CH'/CH)² = H'M/MH = 2  (см. задачу 56978), а поскольку  CH = CH' cos∠C,  то  ∠C = 45°.


Ответ

45°.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2015
класс
Класс 9
задача
Номер 9.7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .